Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Biol Dyn ; 14(1): 748-766, 2020 12.
Article in English | MEDLINE | ID: covidwho-842271

ABSTRACT

The outbreak of COVID-19 was first experienced in Wuhan City, China, during December 2019 before it rapidly spread over globally. This paper has proposed a mathematical model for studying its transmission dynamics in the presence of face mask wearing and hospitalization services of human population in Tanzania. Disease-free and endemic equilibria were determined and subsequently their local and global stabilities were carried out. The trace-determinant approach was used in the local stability of disease-free equilibrium point while Lyapunov function technique was used to determine the global stability of both disease-free and endemic equilibrium points. Basic reproduction number, R0 , was determined in which its numerical results revealed that, in the presence of face masks wearing and medication services or hospitalization as preventive measure for its transmission, R0=0.698 while in their absence R0=3.8 . This supports its analytical solution that the disease-free equilibrium point E0 is asymptotically stable whenever R0<1 , while endemic equilibrium point E∗ is globally asymptotically stable for R0>1 . Therefore, this paper proves the necessity of face masks wearing and hospitalization services to COVID-19 patients to contain the disease spread to the population.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Models, Biological , Pandemics , Pneumonia, Viral/transmission , Basic Reproduction Number , COVID-19 , Computer Simulation , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Disease Susceptibility , Endemic Diseases/prevention & control , Endemic Diseases/statistics & numerical data , Humans , Masks/statistics & numerical data , Mathematical Concepts , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Tanzania/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL